Methods for Intercalating and Exfoliating Hexagonal Boron Nitride

Innovators at NASA's Glenn Research Center have developed a number of materials and methods to optimize the performance of nanomaterials by making them tougher, more resistant, and easier to process. Glenn's scientists are generating critical improvements at all stages of nanomaterial production, from finding new ways to produce nanomaterials, to purifying them to work more effectively with advanced composites, to devising innovative techniques to incorporate them into matrices, veils, and coatings. These advances can be used to deposit protective coatings for textile-based composite materials, layer carbon nanotubes to add reinforcement, upgrade the properties of carbon ceramic matrix composites (CMCs), and integrate nanomaterial fibers into polymer matrix composites (PMCs). The field of nanomaterials is expanding rapidly, and NASA's Glenn Research Center is just as rapidly creating newer and better ways to deploy nanomaterials in industry and research.

In one patented technology, NASA researchers invented a process in which the exfoliation of hexagonal boron nitride (useful as a lubricant and found in substances from cosmetics to pencil lead) is facilitated by converting a set of chemicals into a set of oxide nanoparticles. In another advance, NASA scientists discovered a novel method to purify nanomaterials by dissolving excess reactants and catalysts in a metal chloride salt. Eliminating these residual impurities allows these nanomaterials to be more reliable and predictable, particularly in the production of boron nitride nanomaterials and nanomaterial-based polymer and ceramic composites.

In addition to advances in nanomaterial production, NASA's Glenn Research Center has developed new ways to use nanomaterials in fabrication. One technique involves selectively placing organically modified clays into an aromatic/alkoxy blended resin to create a nanocomposite that has increased strength and stiffness without sacrificing toughness in the cured epoxy. Another patented technology centers on a new method of coating, which uses a cylindrical (or other) array of electrospinning needles to continuously apply a coating of nanofiber material to the surface of a composite precursor material. For those who are interested in ways of upgrading polymer matrix composites (PMCs), Glenn's innovators have invented a method for incorporating fibers into a PMC structure. The applications for nanomaterials are proliferating, and NASA's Glenn Research Center has many new approaches to take advantage of this technology.

Potential applications for these new materials and methods include aircraft, electronics, ultracapacitors, electronic sensors, batteries, windmill blades, textiles, furniture, fuel cells, solar cells, and race track memory for computers.

NASA is actively seeking licensees to commercialize this technology. Please contact the Technology Transfer Office at This email address is being protected from spambots. You need JavaScript enabled to view it. to initiate licensing discussions. Follow this link for more information: http://technology.nasa.gov/patent/TB2016/LEW-TOPS-27 .